

Crash Sleds: Technologies for Now and the Future

Higher Force Capacity

© Live Load Compensation

Michael DeLeeuw Instron GmbH

More is Better? An Ultra-High Performance Sled

- Why?
 - Higher Payload and Peak Acceleration Targets
 - More On-Sled Fixturing Flexibility
 - Intrusion
 - Static and Dynamic Yaw
 - 2nd Row Test Bucks

- Why Not?
 - High Mechanical Gain = Compromised Low Range Performance?
 - Cost (Complexity) and Risk

- Technical Approach
 - Use Existing Analytical System Models to Understand Potential
 - Isolate and Improve Performance "Bottlenecks"
 - Manage Risk

Modified Loading Unit

What we Got

Higher force means higher peak acceleration...

... but also higher dynamics due to higher mechanical gain

What we Got

(a) Acceleration

20% Increase in Peak Accel with 100% more payload 1G RMS from Target

< 0.5 kph difference from Target with 100% more payload

More is Better? An Ultra-High Performance Sled

What we Got

Improved Peak Replication with double the payload

Better "late pulse" control

Improved Velocity matching

1G RMS Accuracy to Acceleration

0.2 m/s RMS Accuracy to Acceleration

What we Got

Improved dynamics even with higher payload

Better accuracy in fewer iterations

Fully Integrated Performance Predictions

What's Happening on Your Sled?

Live Load Compensation

- The Challenge
 - What Happens on the Sled Affects Repeatibility
 - Intrusion, Side Impact Simulation, etc., Create "Live Loads"
 - ATDs are Uncoupled Mass (sometimes)
 - If we can Model the Live Loads, we can Compensate Them
 - Deliverables: Improved Repeatibility, Reduced Setup, → Better Data!

Live Load Compensation

- Modeling Live Loads
 - Numeric Specimen Models
 - Experimental Derivation
 - Some Combination of the Two

Measurement and/or Modeling

Figure 4: Raw data from high speed video analysis

Live Load Dynamics

Combined Live Load with Sled Target

Live Load Compensation

- Disturbance Forces as Secondary Targets
 - Net Sled Acceleration is the Target
 - Live Load = Disturbance Force = Error
 - Combine Both in Pulse Development

Live Load Disturbance Force

Net Accelerative Force (Modified Target)

Live Load Compensation

Preliminary Results

Sled Mass: 1170kg

Coupled Payload: 1700kg

Dynamic (Live) Payload: 1500kg

Velocity Within 0.1 m/s

Benefits:

Reduce Setup Time for Complex Tests Improved Results (Accel and Velocity) Improved Side Impact Results Improved Intrusion Results

Conclusions

- More Performance <u>and</u> Higher Accuracy
 - Burden on Passive Safety Performance will not decrease
 - More complex crash scenarios means more complex tests
 - Alternative Materials
 - Lightweighting
 - Battery Power
 - Intrusion
 - Side Impact
 - Buck Dynamics
 - Belt Tensioners
 - ATD Payloads

Thank You!

Michael DeLeeuw

Instron GmbH

Instron GmbH Landwehrstraße 65 D-64293 Darmstadt Germany

